β-adrenergic receptor stimulation transactivates protease-activated receptor 1 via matrix metalloproteinase 13 in cardiac cells.

نویسندگان

  • Fabrice Jaffré
  • Alan E Friedman
  • Zhaoyang Hu
  • Nigel Mackman
  • Burns C Blaxall
چکیده

BACKGROUND Chronic β-adrenergic receptor (β-AR) overstimulation, a hallmark of heart failure, is associated with increased cardiac expression of matrix metalloproteinases (MMPs). MMP-1 has been shown to cleave and activate the protease-activated receptor 1 (PAR1) in noncardiac cells. In the present study, we hypothesized that β-AR stimulation would result in MMP-dependent PAR1 transactivation in cardiac cells. METHODS AND RESULTS β-AR stimulation of neonatal rat ventricular myocytes (NRVMs) or cardiac fibroblasts with isoproterenol transduced with an alkaline phosphatase-tagged PAR1 elicited a significant increase in alkaline phosphatase-PAR1 cleavage. This isoproterenol-dependent cleavage was significantly reduced by the broad-spectrum MMP inhibitor GM6001. Importantly, specific MMP-13 inhibitors also decreased alkaline phosphatase-PAR1 cleavage in isoproterenol-stimulated NRVMs, as well as in NRVMs stimulated with conditioned medium from isoproterenol-stimulated cardiac fibroblasts. Moreover, we found that recombinant MMP-13 stimulation cleaved alkaline phosphatase-PAR1 in NRVMs at DPRS(42)↓(43)FLLRN. This also led to the activation of the ERK1/2 pathway through Gαq in NRVMs and via the Gαq/ErbB receptor pathways in cardiac fibroblasts. MMP-13 elicited similar levels of ERK1/2 activation but lower levels of generation of inositol phosphates in comparison to thrombin. Finally, we demonstrated that either PAR1 genetic ablation or pharmacological inhibition of MMP-13 prevented isoproterenol-dependent cardiac dysfunction in mice. CONCLUSIONS In this study, we demonstrate that β-AR stimulation leads to MMP-13 transactivation of PAR1 in both cardiac fibroblasts and cardiomyocytes and that this likely contributes to pathological activation of Gαq and ErbB receptor-dependent pathways in the heart. We propose that this mechanism may underlie the development of β-AR overstimulation-dependent cardiac dysfunction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β-Adrenergic Receptor-Stimulated Cardiac Myocyte Apoptosis: Role of β1 Integrins

Increased sympathetic nerve activity to the myocardium is a central feature in patients with heart failure. Accumulation of catecholamines plays an important role in the pathogenesis of heart disease. Acting via β-adrenergic receptors (β-AR), catecholamines (norepinephrine and isoproterenol) increase cardiac myocyte apoptosis in vitro and in vivo. Specifically, β(1)-AR and β(2)-AR coupled to Gα...

متن کامل

cAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells

Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...

متن کامل

Exogenous ubiquitin modulates chronic β-adrenergic receptor-stimulated myocardial remodeling: role in Akt activity and matrix metalloproteinase expression.

β-Adrenergic receptor (β-AR) stimulation increases extracellular ubiquitin (UB) levels, and extracellular UB inhibits β-AR-stimulated apoptosis in adult cardiac myocytes. This study investigates the role of exogenous UB in chronic β-AR-stimulated myocardial remodeling. l-Isoproterenol (ISO; 400 μg·kg(-1)·h(-1)) was infused in mice in the presence or absence of UB (1 μg·g(-1)·h(-1)). Left ventri...

متن کامل

β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway.

AIMS Activation of the β(1)-adrenergic receptor and its G protein, G(s), induces cardiac hypertrophy. However, activation of classic Gα(s) effectors, adenylyl cyclases (AC) and protein kinase A, is not sufficient for induction of hypertrophy, which suggests the involvement of additional pathway(s) activated by G(s). Recently, we discovered that βγ subunits of G(q) induce phosphorylation of the ...

متن کامل

Adenoviral-directed expression of the type 1A angiotensin receptor promotes cardiomyocyte hypertrophy via transactivation of the epidermal growth factor receptor.

Angiotensin II (Ang II) may cause cardiac hypertrophy via type 1 Ang II receptors (AT(1)) on cardiomyocytes and through growth factors released from cardiac fibroblasts. Whereas cardiomyocyte-specific AT(1) receptor expression produces cardiac hypertrophy and remodeling in vivo, delineation of the signals that mediate growth to Ang II is challenging because the prevailing in vitro model (cultur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 125 24  شماره 

صفحات  -

تاریخ انتشار 2012